/* * Copyright (C) 2003 Jana Saout * * This file is released under the GPL. */ #include #include #include #include #include #include #include #include #include #include "dm.h" #include "dm-bio-list.h" #include "dm-daemon.h" /* * per bio private data */ struct crypt_io { struct dm_target *target; struct bio *bio; struct bio *first_clone; atomic_t pending; int error; }; /* * context holding the current state of a multi-part conversion */ struct convert_context { struct bio *bio_in; struct bio *bio_out; unsigned int offset_in; unsigned int offset_out; int idx_in; int idx_out; sector_t sector; int write; }; /* * Crypt: maps a linear range of a block device * and encrypts / decrypts at the same time. */ struct crypt_config { struct dm_dev *dev; sector_t start; /* * pool for per bio private data and * for encryption buffer pages */ mempool_t *io_pool; mempool_t *page_pool; /* * crypto related data */ struct crypto_tfm *tfm; sector_t iv_offset; int (*iv_generator)(struct crypt_config *cc, u8 *iv, sector_t sector); int iv_size; int key_size; u8 key[0]; }; #define MIN_IOS 256 #define MIN_POOL_PAGES 32 #define MIN_BIO_PAGES 8 static kmem_cache_t *_crypt_io_pool; /* * Mempool alloc and free functions for the page */ static void *mempool_alloc_page(int gfp_mask, void *data) { return alloc_page(gfp_mask); } static void mempool_free_page(void *page, void *data) { __free_page(page); } /* * Different IV generation algorithms */ static int crypt_iv_plain(struct crypt_config *cc, u8 *iv, sector_t sector) { *(u32 *)iv = cpu_to_le32(sector & 0xffffffff); if (cc->iv_size > sizeof(u32) / sizeof(u8)) memset(iv + (sizeof(u32) / sizeof(u8)), 0, cc->iv_size - (sizeof(u32) / sizeof(u8))); return 0; } static inline int crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out, struct scatterlist *in, unsigned int length, int write, sector_t sector) { u8 iv[cc->iv_size]; int r; if (cc->iv_generator) { r = cc->iv_generator(cc, iv, sector); if (r < 0) return r; if (write) r = crypto_cipher_encrypt_iv(cc->tfm, out, in, length, iv); else r = crypto_cipher_decrypt_iv(cc->tfm, out, in, length, iv); } else { if (write) r = crypto_cipher_encrypt(cc->tfm, out, in, length); else r = crypto_cipher_decrypt(cc->tfm, out, in, length); } return r; } static void crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx, struct bio *bio_out, struct bio *bio_in, sector_t sector, int write) { ctx->bio_in = bio_in; ctx->bio_out = bio_out; ctx->offset_in = 0; ctx->offset_out = 0; ctx->idx_in = bio_in ? bio_in->bi_idx : 0; ctx->idx_out = bio_out ? bio_out->bi_idx : 0; ctx->sector = sector + cc->iv_offset; ctx->write = write; } /* * Encrypt / decrypt data from one bio to another one (can be the same one) */ static int crypt_convert(struct crypt_config *cc, struct convert_context *ctx) { int r = 0; while(ctx->idx_in < ctx->bio_in->bi_vcnt && ctx->idx_out < ctx->bio_out->bi_vcnt) { struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in); struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out); struct scatterlist sg_in = { .page = bv_in->bv_page, .offset = bv_in->bv_offset + ctx->offset_in, .length = 1 << SECTOR_SHIFT }; struct scatterlist sg_out = { .page = bv_out->bv_page, .offset = bv_out->bv_offset + ctx->offset_out, .length = 1 << SECTOR_SHIFT }; ctx->offset_in += sg_in.length; if (ctx->offset_in >= bv_in->bv_len) { ctx->offset_in = 0; ctx->idx_in++; } ctx->offset_out += sg_out.length; if (ctx->offset_out >= bv_out->bv_len) { ctx->offset_out = 0; ctx->idx_out++; } r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length, ctx->write, ctx->sector); if (r < 0) break; ctx->sector++; } return r; } /* * Generate a new unfragmented bio with the given size * This should never violate the device limitations * May return a smaller bio when running out of pages */ static struct bio * crypt_alloc_buffer(struct crypt_config *cc, unsigned int size, struct bio *base_bio, int *bio_vec_idx) { struct bio *bio; int nr_iovecs = dm_div_up(size, PAGE_SIZE); int gfp_mask = GFP_NOIO | __GFP_HIGHMEM; int flags = current->flags; int i; /* * Tell VM to act less aggressively and fail earlier. * This is not necessary but increases throughput. * FIXME: Is this really intelligent? */ current->flags &= ~PF_MEMALLOC; if (base_bio) bio = bio_clone(base_bio, GFP_NOIO); else bio = bio_alloc(GFP_NOIO, nr_iovecs); if (!bio) return NULL; /* if the last bio was not complete, continue where that one ended */ bio->bi_idx = *bio_vec_idx; bio->bi_vcnt = *bio_vec_idx; bio->bi_size = 0; bio->bi_flags &= ~(1 << BIO_SEG_VALID); /* bio->bi_idx pages have already been allocated */ size -= bio->bi_idx * PAGE_SIZE; for(i = bio->bi_idx; i < nr_iovecs; i++) { struct bio_vec *bv = bio_iovec_idx(bio, i); bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask); if (!bv->bv_page) break; /* * if additional pages cannot be allocated without waiting, * return a partially allocated bio, the caller will then try * to allocate additional bios while submitting this partial bio */ if ((i - bio->bi_idx) == (MIN_BIO_PAGES - 1)) gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT; bv->bv_offset = 0; if (size > PAGE_SIZE) bv->bv_len = PAGE_SIZE; else bv->bv_len = size; bio->bi_size += bv->bv_len; bio->bi_vcnt++; size -= bv->bv_len; } if (flags & PF_MEMALLOC) current->flags |= PF_MEMALLOC; if (!bio->bi_size) { bio_put(bio); return NULL; } /* * Remember the last bio_vec allocated to be able * to correctly continue after the splitting. */ *bio_vec_idx = bio->bi_vcnt; return bio; } static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *bio, unsigned int bytes) { unsigned int start, end; struct bio_vec *bv; int i; /* * This is ugly, but Jens Axboe thinks that using bi_idx in the * endio function is too dangerous at the moment, so I calculate the * correct position using bi_vcnt and bi_size. * The bv_offset and bv_len fields might already be modified but we * know that we always allocated whole pages. * A fix to the bi_idx issue in the kernel is in the works, so * we will hopefully be able to revert to the cleaner solution soon. */ i = bio->bi_vcnt - 1; bv = bio_iovec_idx(bio, i); end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - bio->bi_size; start = end - bytes; start >>= PAGE_SHIFT; if (!bio->bi_size) end = bio->bi_vcnt; else end >>= PAGE_SHIFT; for(i = start; i < end; i++) { bv = bio_iovec_idx(bio, i); BUG_ON(!bv->bv_page); mempool_free(bv->bv_page, cc->page_pool); bv->bv_page = NULL; } } /* * One of the bios was finished. Check for completion of * the whole request and correctly clean up the buffer. */ static void dec_pending(struct crypt_io *io, int error) { struct crypt_config *cc = (struct crypt_config *) io->target->private; if (error < 0) io->error = error; if (!atomic_dec_and_test(&io->pending)) return; if (io->first_clone) bio_put(io->first_clone); if (io->bio) bio_endio(io->bio, io->bio->bi_size, io->error); mempool_free(io, cc->io_pool); } /* * kcryptd: * * Needed because it would be very unwise to do decryption in an * interrupt context, so bios returning from read requests get * queued here. */ static spinlock_t _kcryptd_lock = SPIN_LOCK_UNLOCKED; static struct bio_list _kcryptd_bios; static struct dm_daemon _kcryptd; /* * Fetch a list of the complete bios. */ static struct bio *kcryptd_get_bios(void) { struct bio *bio; spin_lock_irq(&_kcryptd_lock); bio = bio_list_get(&_kcryptd_bios); spin_unlock_irq(&_kcryptd_lock); return bio; } /* * Append bio to work queue */ static void kcryptd_queue_bio(struct bio *bio) { unsigned long flags; spin_lock_irqsave(&_kcryptd_lock, flags); bio_list_add(&_kcryptd_bios, bio); spin_unlock_irqrestore(&_kcryptd_lock, flags); } static jiffy_t kcryptd_do_work(void) { int r; struct bio *bio; struct bio *next_bio; struct crypt_io *io; struct crypt_config *cc; struct convert_context ctx; bio = kcryptd_get_bios(); while (bio) { io = (struct crypt_io *) bio->bi_private; cc = (struct crypt_config *) io->target->private; crypt_convert_init(cc, &ctx, io->bio, io->bio, io->bio->bi_sector - io->target->begin, 0); r = crypt_convert(cc, &ctx); next_bio = bio->bi_next; bio->bi_next = NULL; bio_put(bio); dec_pending(io, r); bio = next_bio; } return 0; } /* * Decode key from its hex representation */ static int crypt_decode_key(u8 *key, char *hex, int size) { char buffer[3]; char *endp; int i; buffer[2] = '\0'; for(i = 0; i < size; i++) { buffer[0] = *hex++; buffer[1] = *hex++; key[i] = (u8)simple_strtoul(buffer, &endp, 16); if (endp != &buffer[2]) return -EINVAL; } if (*hex != '\0') return -EINVAL; return 0; } /* * Encode key into its hex representation */ static void crypt_encode_key(char *hex, u8 *key, int size) { static char hex_digits[] = "0123456789abcdef"; int i; for(i = 0; i < size; i++) { *hex++ = hex_digits[*key >> 4]; *hex++ = hex_digits[*key & 0x0f]; key++; } *hex++ = '\0'; } /* * Construct an encryption mapping: * */ static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) { struct crypt_config *cc; struct crypto_tfm *tfm; char *tmp; char *cipher; char *mode; int crypto_flags; int key_size; if (argc != 5) { ti->error = "dm-crypt: Not enough arguments"; return -EINVAL; } tmp = argv[0]; cipher = strsep(&tmp, "-"); mode = strsep(&tmp, "-"); if (tmp) DMWARN("dm-crypt: Unexpected additional cipher options"); key_size = strlen(argv[1]) >> 1; cc = kmalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); if (cc == NULL) { ti->error = "dm-crypt: Cannot allocate transparent encryption context"; return -ENOMEM; } if (!mode || strcmp(mode, "plain") == 0) cc->iv_generator = crypt_iv_plain; else if (strcmp(mode, "ecb") == 0) cc->iv_generator = NULL; else { ti->error = "dm-crypt: Invalid chaining mode"; return -EINVAL; } if (cc->iv_generator) crypto_flags = CRYPTO_TFM_MODE_CBC; else crypto_flags = CRYPTO_TFM_MODE_ECB; tfm = crypto_alloc_tfm(cipher, crypto_flags); if (!tfm) { ti->error = "dm-crypt: Error allocating crypto tfm"; goto bad1; } if (tfm->crt_u.cipher.cit_decrypt_iv && tfm->crt_u.cipher.cit_encrypt_iv) /* at least a 32 bit sector number should fit in our buffer */ cc->iv_size = max(crypto_tfm_alg_ivsize(tfm), (unsigned int)(sizeof(u32) / sizeof(u8))); else { cc->iv_size = 0; if (cc->iv_generator) { DMWARN("dm-crypt: Selected cipher does not support IVs"); cc->iv_generator = NULL; } } cc->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab, mempool_free_slab, _crypt_io_pool); if (!cc->io_pool) { ti->error = "dm-crypt: Cannot allocate crypt io mempool"; goto bad2; } cc->page_pool = mempool_create(MIN_POOL_PAGES, mempool_alloc_page, mempool_free_page, NULL); if (!cc->page_pool) { ti->error = "dm-crypt: Cannot allocate page mempool"; goto bad3; } cc->tfm = tfm; cc->key_size = key_size; if ((key_size == 0 && strcmp(argv[1], "-") != 0) || crypt_decode_key(cc->key, argv[1], key_size) < 0) { ti->error = "dm-crypt: Error decoding key"; goto bad4; } if (tfm->crt_u.cipher.cit_setkey(tfm, cc->key, key_size) < 0) { ti->error = "dm-crypt: Error setting key"; goto bad4; } if (sscanf(argv[2], SECTOR_FORMAT, &cc->iv_offset) != 1) { ti->error = "dm-crypt: Invalid iv_offset sector"; goto bad4; } if (sscanf(argv[4], SECTOR_FORMAT, &cc->start) != 1) { ti->error = "dm-crypt: Invalid device sector"; goto bad4; } if (dm_get_device(ti, argv[3], cc->start, ti->len, dm_table_get_mode(ti->table), &cc->dev)) { ti->error = "dm-crypt: Device lookup failed"; goto bad4; } ti->private = cc; return 0; bad4: mempool_destroy(cc->page_pool); bad3: mempool_destroy(cc->io_pool); bad2: crypto_free_tfm(tfm); bad1: kfree(cc); return -EINVAL; } static void crypt_dtr(struct dm_target *ti) { struct crypt_config *cc = (struct crypt_config *) ti->private; mempool_destroy(cc->page_pool); mempool_destroy(cc->io_pool); crypto_free_tfm(cc->tfm); dm_put_device(ti, cc->dev); kfree(cc); } static int crypt_endio(struct bio *bio, unsigned int done, int error) { struct crypt_io *io = (struct crypt_io *) bio->bi_private; struct crypt_config *cc = (struct crypt_config *) io->target->private; if (bio_rw(bio) == WRITE) { /* * free the processed pages, even if * it's only a partially completed write */ crypt_free_buffer_pages(cc, bio, done); } if (bio->bi_size) return 1; /* * successful reads are decrypted by the worker thread */ if ((bio_rw(bio) == READ || bio_rw(bio) == READA) && bio_flagged(bio, BIO_UPTODATE)) { kcryptd_queue_bio(bio); dm_daemon_wake(&_kcryptd); return 0; } bio_put(bio); dec_pending(io, error); return error; } static int crypt_map(struct dm_target *ti, struct bio *bio, union map_info *map_context) { struct crypt_config *cc = (struct crypt_config *) ti->private; struct crypt_io *io = mempool_alloc(cc->io_pool, GFP_NOIO); struct bio *clone = NULL; struct convert_context ctx; unsigned int remaining = bio->bi_size; sector_t sector = bio->bi_sector - ti->begin; int bio_vec_idx = 0; int r = 0; io->target = ti; io->bio = bio; io->first_clone = NULL; io->error = 0; atomic_set(&io->pending, 1); /* hold a reference */ if (bio_rw(bio) == WRITE) crypt_convert_init(cc, &ctx, NULL, bio, sector, 1); /* * The allocated buffers can be smaller than the whole bio, * so repeat the whole process until all the data can be handled. */ while (remaining) { if (bio_rw(bio) == WRITE) { clone = crypt_alloc_buffer(cc, bio->bi_size, io->first_clone, &bio_vec_idx); if (clone) { ctx.bio_out = clone; r = crypt_convert(cc, &ctx); if (r < 0) { crypt_free_buffer_pages(cc, clone, clone->bi_size); bio_put(clone); goto cleanup; } } } else clone = bio_clone(bio, GFP_NOIO); if (!clone) { r = -ENOMEM; goto cleanup; } if (!io->first_clone) { /* * hold a reference to the first clone, because it * holds the bio_vec array and that can't be freed * before all other clones are released */ bio_get(clone); io->first_clone = clone; } atomic_inc(&io->pending); clone->bi_private = io; clone->bi_end_io = crypt_endio; clone->bi_bdev = cc->dev->bdev; clone->bi_sector = cc->start + sector; clone->bi_rw = bio->bi_rw; remaining -= clone->bi_size; sector += bio_sectors(clone); generic_make_request(clone); } /* drop reference, clones could have returned before we reach this */ dec_pending(io, 0); return 0; cleanup: if (io->first_clone) { dec_pending(io, r); return 0; } /* if no bio has been dispatched yet, we can directly return the error */ mempool_free(io, cc->io_pool); return r; } static int crypt_status(struct dm_target *ti, status_type_t type, char *result, unsigned int maxlen) { struct crypt_config *cc = (struct crypt_config *) ti->private; char buffer[32]; const char *cipher; const char *mode = NULL; int offset; switch (type) { case STATUSTYPE_INFO: result[0] = '\0'; break; case STATUSTYPE_TABLE: cipher = crypto_tfm_alg_name(cc->tfm); switch(cc->tfm->crt_u.cipher.cit_mode) { case CRYPTO_TFM_MODE_CBC: mode = "plain"; break; case CRYPTO_TFM_MODE_ECB: mode = "ecb"; break; default: BUG(); } snprintf(result, maxlen, "%s-%s ", cipher, mode); offset = strlen(result); if (cc->key_size > 0) { if ((maxlen - offset) < ((cc->key_size << 1) + 1)) return -ENOMEM; crypt_encode_key(result + offset, cc->key, cc->key_size); offset += cc->key_size << 1; } else { if (offset >= maxlen) return -ENOMEM; result[offset++] = '-'; } format_dev_t(buffer, cc->dev->bdev->bd_dev); snprintf(result + offset, maxlen - offset, " " SECTOR_FORMAT " %s " SECTOR_FORMAT, cc->iv_offset, buffer, cc->start); break; } return 0; } static struct target_type crypt_target = { .name = "crypt", .module = THIS_MODULE, .ctr = crypt_ctr, .dtr = crypt_dtr, .map = crypt_map, .status = crypt_status, }; static int __init dm_crypt_init(void) { int r; _crypt_io_pool = kmem_cache_create("dm-crypt_io", sizeof(struct crypt_io), 0, 0, NULL, NULL); if (!_crypt_io_pool) return -ENOMEM; r = dm_daemon_start(&_kcryptd, "kcryptd", kcryptd_do_work); if (r) { DMERR("couldn't create kcryptd: %d", r); kmem_cache_destroy(_crypt_io_pool); return r; } r = dm_register_target(&crypt_target); if (r < 0) { DMERR("crypt: register failed %d", r); dm_daemon_stop(&_kcryptd); kmem_cache_destroy(_crypt_io_pool); } return r; } static void __exit dm_crypt_exit(void) { int r = dm_unregister_target(&crypt_target); if (r < 0) DMERR("crypt: unregister failed %d", r); dm_daemon_stop(&_kcryptd); kmem_cache_destroy(_crypt_io_pool); } module_init(dm_crypt_init); module_exit(dm_crypt_exit); MODULE_AUTHOR("Jana Saout "); MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); MODULE_LICENSE("GPL");